26. [CNN기초] CNN 개요
오랜만입니다. 2022년은 많이 바빠서 개인 연구 포스팅을 거의 못했네요. 2021년에는 선형 회귀, 분류, 기초적인 완전연결 인공신경망 Neural Net, 경사하강법, 데이터 전처리를 포스팅 하였고, 2022년에는 CNN을 천천히 하자 다짐했건만... 솔직히, CNN을 라이브러리없이 구현하는 것이 상당히 어려운 작업이었습니다. 올해는 또 둘째까지 돌보았기 때문에 애기들 자는 밤 10시에 같이 자는 경우가 많았죠...(ㅜㅜ) 결국 공부하고 완성하는데 1년이란 시간이 필요했습니다. 각설하고 CNN이 무엇인지, 1차원 CNN, 2차원 CNN(image to column), pooling을 구현하고 마지막으로 라이브러리 없이 도형(세모,네모,원)을 구별해 보는 내용을 연재합니다. 1. 합성곱(CNN)을 사용..
2023. 1. 1.
18. 다층 퍼셉트론(MPL)의 등장-2.비선형 회귀식(실습)
저번시간에 키와 몸무게의 관계를 예측하는 모델을 만들기 위해 다층 퍼셉트론과 ReLU 활성화함수를 이용하고 순방향과 역전파를 수학적으로 표현해 보았다. 이번 시간에는 수학적 표현을 Numpy 코드로 표현해 보고 Pytorch 결과와 비교해보도록 하겠다. 1. 데이터 정의 저번시간에 정의한 데이터, 가중치 및 편향 설정이다. 1) 입력 : input (batch_size, 1) 2) 목표값 : target (batch_size, 1) 3) 가중치 및 편향 (1) G1 가중치 : W1 (8, 1) , G1 편향 : B1 (8, 1) (2) G2 가중치 : W2 (4, 8) , G1 편향 : B2 (4, 1) (3) G3 가중치 : W3 (1, 4) , G1 편향 : B3 (1, 1) 코드로 표현하면 아래와 ..
2022. 1. 21.