softmax Backpropagation1 22. 다중회귀-소프트맥스 함수 역전파(고급, 쉬운 방법) 이번 시간엔 소프트맥스 함수 역전파를 고급지게(?) 다뤄볼 것이다. 왜냐하면 기존에 다룬 방법(8.다중분류 구현하기(기초실습), 9.다중분류 구현하기(심화실습) ) 은 너무 비효율적이기 때문이다. (그래도 고급을 이해하기 위해서 읽고 오시라, 기본 수학적 배경 없으면 읽기 힘들 수 있다.) 일일이 소프트맥스 미분 행렬을 만드는 것은 너무나도 귀찮은(...) 일이다. 아래는 IRIS 꽃 분류에 사용하였던 소프트맥스 미분 행렬이다. 3개 출력이므로 (3, 3) Size의 행렬이 된다. dsmax_dg_matrix = np.array([[(smax_WXB1*(1-smax_WXB1))[0], -(smax_WXB1*smax_WXB2)[0], -(smax_WXB1*smax_WXB3)[0]], [-(smax_WXB1.. 2022. 2. 10. 이전 1 다음